## MENTAL CALCULATIONS POLICY

Reviewed March 2024

## Introduction

The following calculation policy has been devised to meet requirements of the National Curriculum for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in mental calculations across the school.

This policy has been created to highlight the progression in mental calculation strategies for each of the four operations. It sets out:

- Essential understanding of the principles underpinning each operation;
- Example models and images to support children's understanding of the operation and the related mental strategies;
- Core mental skills and strategies that all children should learn, including examples and the requisite prior knowledge in order to learn the new strategies;
- Enhanced mental skills and strategies that should be reserved for teaching to specific groups of children who understand the special cases that lend themselves to these strategies


## Mental methods of calculation

Oral and mental work in mathematics is essential, particularly so in calculation. Early practical, oral and mental work must lay the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts. Later work must ensure that children recognise how the operations relate to one another and how the rules and laws of arithmetic are to be used and applied.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images and the application of acquired number knowledge and skills. Secure mental calculation requires the ability to:

- recall key number facts instantly;
- use taught strategies to work out the calculation;
- understand how the rules and laws of arithmetic are used and applied


## Core understanding for each operation

For addition, children understand that:
Addition is the combining of two or more quantities resulting in a larger total.
Addition is the inverse of subtraction.
Addition is commutative i.e. that $3+5=8$ and $5+3=8$.
For subtraction, children understand that:
Subtraction is the removing or taking away a quantity from another.
Subtraction is the inverse of addition.
Subtraction is not commutative i.e. $3+5=5+3$ but $5-3 \neq 3-5$.
For multiplication, children understand that:
Multiplication is repeated addition.
Multiplication is the inverse of division.
Multiplication is commutative i.e. that $3 \times 5=15$ and $5 \times 3=15$.
For division, children understand that:
Division is sharing or grouping (repeated subtraction).
Division is the inverse of multiplication.
Division is not commutative i.e. $3 \times 5=5 \times 3$ but $15 \div 3 \neq 3 \div 15$.


## Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum. However, it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

## Providing a context for calculation

It is important that any type of calculation is given a real-life context or problem-solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within lessons.

## Addition

Year 1
Practical equipment, models and images to support children with mental addition:


| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

## Addition

## Year 2



| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |

## Addition

## Year 3



| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Add groups of small numbers | $\begin{aligned} & 15+13+2 \\ & 16+1+4 \end{aligned}$ | Count on from any given number. Know number bonds to 10 and 20. Add number bonds first. |
| Add a two- or three-digit number to a multiple of 10 or 100 | $\begin{aligned} & 50+38 \\ & 132+60 \\ & 325+200 \end{aligned}$ <br> Show how to work this out on a 100 square/ number line/ base 10/ bead string/bundles of straws. | Partition the non-multiple of 10 e.g. 381 into $300+80+1$. Count on in 10 s from a multiple of 10. <br> Use knowledge of place value to relate $5+3=8$ to $50+30=80$. |
| Add any pair of two-digit numbers, including crossing tens and 100 boundary | $47+58$ <br> Prove that $67+55=$ 122 using practical equipment or jottings. | Partition two-digit numbers into tens and units. Understand place value in three-digit numbers. |
| Add near doubles | $25+26$ | Double any two-digit number. |

## Addition

Year 4


## Addition

## Year 5

Practical equipment, models and images to support children with mental addition:


| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Add a pair of three-digit numbers or fourdigit multiples of 10 | $\begin{aligned} & 38+86 \\ & 350+360 \end{aligned}$ | Partition two-digit numbers into tens and units. Understand place value in three-digit numbers. Use knowledge of place value to relate e.g. $35+36=71$ to $350+360$ $=710$. |
| Add a near multiple of 10 or 100 to any two-digit or three-digit number | $235+198$ | Add 100 to any number. <br> Add a multiple of 100 to any number. <br> Round to the nearest 100. |
| Add any pair of decimal fractions each with units and tenths | $5.7+2.5$ | Partition units and tenths. <br> Count on in tenths, including bridging through 1. <br> Use knowledge of place value to relate e.g. $57+25=82$ to $5.7+2.5$ $=8.2$. |
| Add simple fractions with the same denominator | $1 / 5+3 / 5$ | Understand what fractions represent. <br> Know that a number is whole if the numerator and denominator are the same. |
| Find doubles of decimals each with units and tenths | $1.6+1.6$ | Double any two-digit number. Understand place value. |

## Addition

## Year 6



## Subtraction

Year 1

| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

## Subtraction

Year 2

| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

## Subtraction

Year 3

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Subtract groups of small numbers | 7-3-2 in context e.g. There were 7 children on the bus, 3 got off in Preston, 2 got off in Chipping. How many were left on the bus? | Count on and back in ones from any given number. Know number bonds to 10. |
| Subtract pairs of two-digit numbers including crossing the tens boundary | $\begin{aligned} & 65-38 \\ & 91-35 \end{aligned}$ | Count on and back in ones from any two-digit number. Count on and back in tens from any two-digit number. Partition two-digit numbers to tens and units. Recombine tens and units. Understand place value in two-digit numbers. |
| Subtract single-digit numbers and multiples of 10 or 100 from three-digit numbers | $\begin{aligned} & 348-7 \\ & 283-20 \\ & 364-100 \end{aligned}$ | Count on and back in ones from any three-digit number. Count on and back in tens from any three-digit number. Count on and back in hundreds from any three-digit number. |
| Reorder and recombine numbers to enable more efficient calculations | $\begin{aligned} & 7-3-2=7-(3+2) \\ & 14-5-4=14-4-5 \end{aligned}$ | Understand that subtraction is not commutative. Know and use knowledge of number bonds to 10. Count on and back in tens and ones. |

## Subtraction

Year 4

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Subtract twodigit or threedigit multiples of 10 | $\begin{aligned} & 120-40 \\ & 370-180 \end{aligned}$ | Use knowledge of place value to relate12-4 to 120-40 Count on and back in tens. Use knowledge of number bonds to efficiently subtract numbers. |
| Subtract a near multiple of 10 | $63-19$ <br> Model using practical equipment. | Round to the nearest 10. <br> Add a multiple of 10 to any number. Count on and back in tens and ones. |
| Subtract single-digit numbers and multiples of 10,100 or 1000 from four-digit numbers | $\begin{aligned} & 2739-7 \\ & 1876-50 \\ & 2718-300 \\ & 3827-1000 \end{aligned}$ | Count on and back in ones from any four-digit number. Count on and back in tens from any four-digit number. Count on and back in hundreds from any four-digit number. Count on and back in thousands from any four-digit number. |
| Use known facts and knowledge of place value to work out new facts | $\begin{aligned} & 32-6=26 \\ & 3200-600=2600 \end{aligned}$ | Count on and back in ones from any two-digit number. Count on and back in tens from any two-digit number. Partition two-digit numbers to tens and units. <br> Recombine tens and units. <br> Understand place value in two-digit numbers. Understand the effect of multiplying by 10/100/1000. |

## Subtraction

Year 5

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Subtract a pair of two-digit numbers or three-digit multiples of 10 | 620-380 | Partition three-digit numbers into hundreds and tens. Understand place value in two- and three-digit numbers. Use knowledge of place value to relate 62-38 to 620-380. |
| Subtract a near multiple of 10 or 100 from any two- digit or three- digit number | $\begin{aligned} & \hline 326-99 \\ & £ 5.00-£ 1.99 \end{aligned}$ | Subtract a multiple of 10 from any number. Subtract a multiple of 100 from any number. Round numbers to the nearest 10 and 100. |
| Subtract any pair of decimal fractions each with units and tenths | 6.3-4.8 | Partition units and tenths. <br> Count on and back in tenths including bridging through 1. <br> Understand and use the link between decimals and whole numbers e.g. multiply by 10 to give whole numbers then divide the answer by 10. |
| Find the difference between near multiples of 100 or of 1000 | $\begin{aligned} & 607-588 \\ & 6070-3992 \end{aligned}$ | Know number bonds to 100 and related facts (to 1000). Count on and back in hundreds, tens and thousands. |

## Subtraction

## Year 6

| Mental <br> calculation <br> skills | Examples |  |
| :---: | :---: | :---: |
| Subtract pairs <br> of decimals <br> with units, <br> tenths or <br> nunareaths | $5.6-3.38$ | Requisite prior knowledge <br> Understand place value of tenths and hundredths. <br> Recombine units, tenths and hundredths. |
| Subtract a <br> decimal with <br> units and tenths, <br> that is nearly a <br> whole number | $6.5-3.8$ | Understand place value of tenths and hundredths. <br> Be able to round to the nearest whole number. <br> Subtract a whole number from any decimal number. |

## Multiplication

Year 1

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Count on from zero in ones, twos, fives or tens | Count on in ones from any number to 100 . <br> If you count in twos from 0 , what will be the first six numbers? <br> I'm putting 10p coins into this piggy bank. Count in tens to check how much money is going in. <br> Count the number of eyes in this class. | Begin to understand the link between multiplication and repeated addition. <br> Know the number names up to 100 in order, in symbols (using numerals) and words (spoken). <br> Recognise number patterns, in numeric symbols and spoken words. Cross tens boundaries when counting in ones and twos by understanding the base 10 number system. <br> Learn and apply $2 x$ table and $10 x$ table. <br> Understand and use commutativity (multiplication can be done in any order). |

## Multiplication

Year 2

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Double any multiple of 10 up to 100 | Double 15 $30+30=$ <br> Explain how you could work out double 45. Twice 25 is... 40 multiplied by 2 equals... | Double single digit numbers. <br> Double multiples of 10 . <br> Partition two-digit numbers into T and U and recombine T and U (by adding components). <br> Understand that doubling is adding the same number to itself. Understand that doubling is multiplying by 2. |
| Find the total number of objects when they are organised in groups of 2,5 or 10 | What is the total of six groups of 5? <br> How many fingers do these 4 children have? <br> How did you work it out? <br> What is the total of this tally? IIII IIII INI IIII How else could you write $10+10+10+$ 10? | Count on from zero in twos, fives and tens. <br> Relate 'groups of' to repeated addition. <br> Understand that the last number said in the count is the total of the group. <br> Learn and apply $2 x$ table, $10 x$ table and $5 x$ table. <br> Understand and use commutativity (multiplication can be done in any order). <br> Use estimation to predict and check answers. |

## Multiplication

Year 3

| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

Year 4

| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

# Multiplication 

Year 5

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Double threedigit multiples of $\mathbf{1 0}$ to $\mathbf{5 0 0}$ | Double 460 | Double single digit numbers. <br> Understand and use knowledge of base 10 number system to relate $4 \times 2$ to $40 \times 2$ to $400 \times 2$. <br> Partition three-digit numbers into $\mathrm{H}, \mathrm{T}$ and U and recombine (by adding components). |
| Multiply whole numbers and decimals by 10, 100 or 1000 | $1.7 \times 100$ | Understand base 10 number system i.e. 10 ones / units $=1$ ten and vice versa and 10 tens $=1$ hundred and vice versa and 10 tenths $=1$ unit / one and vice versa. <br> Understand that zero can be used as a place holder |
| Multiply pairs of multiples of 10 | $20 \times 30$ | Know multiplication facts to $10 \times 10$. Understand and use knowledge of base 10 number system to relate $3 \times 4=$ 12 to $3 \times 40=120$ to $30 \times 40=1200$. |
| Multiply twodigit numbers by 5 or $\mathbf{2 0}$ | $\begin{aligned} & 17 \times 5 \\ & 38 \times 5 \\ & 74 \times 20 \end{aligned}$ | Multiply two-digit numbers by 10 . <br> Double two-digit and three-digit numbers. <br> Halve two-digit and three-digit numbers. <br> Understand that ( $\times 10 \times 2$ ) is the same as $\times 20$ and that ( $\times 10 \div 2$ ) is the same as $\times 5$. |
| Multiply numbers by 4 or 8 | $16 \times 4$ | Double two-digit and three-digit numbers. Understand the relationship between $\times 2, \mathrm{x} 4$ and x 8 . |
| Multiply by 25 or 50 | $14 \times 25$ | Multiply two-digit and three-digit numbers by 100. <br> Halve numbers. <br> Understand why halving and halving again is the same as finding a quarter. |
| Find factor pairs for numbers to 100 | Factors of 42 | Understand that some numbers can be represented as an array Know multiplication facts to $10 \times 10$. <br> Recall prime numbers to 100. <br> Know that square numbers have an odd number of factors. |

Year 6

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Multiply pairs of two-digit and single- digit numbers | $28 \times 3$ | Know multiplication facts to $10 \times 10$. <br> Partition two-digit numbers into T and U and recombine (by adding components). <br> Understand and use knowledge of base 10 number system to relate $3 \times 4=$ 12 to $3 \times 40=120$. |
| Double decimals with units and tenths | Double 7.6 | Double single digit numbers. <br> Partition decimal numbers into $U$ and tenths and recombine (by adding components). <br> Understand and use knowledge of base 10 number system to relate double 4 to double 0.4. |
| Multiply pairs of multiples of 10 and 100 | $50 \times 30600 \times 20$ | Know multiplication facts to $10 \times 10$. Understand and use knowledge of base 10 number system to relate $3 \times 4=$ 12 to $3 \times 40=120$ to $30 \times 40=1200$. |
| Multiply twodigit decimals | $\begin{aligned} & 0.8 \times 7 \\ & 5.6 \times 9 \end{aligned}$ | Know multiplication facts to $10 \times 10$. Understand and use knowledge of base 10 number system to relate $8 \times 7=$ 56 to $0.8 \times 7=5.6$. |
| Scale up or down using known facts | Given that three oranges cost $24 p$, find the cost of four oranges. | Know multiplication facts to $10 \times 10$, including related division facts. |
| Identify numbers with an odd number of factors and no factor pairs other than one and themselves | What are the factors of 25? <br> Is it always true, sometimes true or never true that square numbers have an odd number of factors? How many different sized rectangular arrays can you make using 12 counters? 17 counters? 13 counters? 16 counters? | Understand that some numbers can be represented as an array. Understand that some numbers can be represented as a square array which is why they are called square numbers. Understand that some numbers have only two factors, one and themselves, and that they are called prime numbers. Understand that every number greater than one is either a prime number or a composite number. <br> Know multiplication facts to $10 \times 10$. |

Year 1

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Count back to zero in ones, twos, fives or tens | Count back in ones from 14 to 0 . <br> Now try counting back in twos from 14 to 0 . <br> How many numbers did you say? <br> Count back in tens from 90 to 0. | Begin to understand the link between division and repeated subtraction <br> Count on from 0 in ones, twos, fives and tens. <br> Cross tens boundaries when counting in ones and twos by understanding the base 10 number system. <br> Know the number names up to 100 in order, in symbols (using numerals) and words (spoken). <br> Understand the amounts the symbols and words represent. <br> Place value - understand what each digit represents in a two-digit number. <br> Recognise number patterns, in numeric symbols and spoken words. |

## Division

Year 2

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Halve any multiple of 10 <br> up to 100 where the answer is even | $40 \div 2$ <br> Use these bundles of straws to help you halve 90 . | Know multiples of 10. <br> Halve even numbers to 20. <br> Understand that halving is dividing by 2 and half as one of two equal parts. Understand and use knowledge of base 10 number system to relate 8 $\div 2 \text { to } 80 \div 2$ |
| Find half of even numbers to 40 | Halve 24 $\begin{aligned} & 32 \div 2 \\ & ? ? \times 2=20 \\ & 28=? ? \times 2 \end{aligned}$ | As above plus: <br> Know even numbers. <br> Partition numbers in different ways e.g. when finding half of 36 partitioning 36 into $20+16$. |
| Use times tables facts to divide two- digit numbers by 2,5 or 10 | $\begin{aligned} & 18 \div 2 \\ & 45 \div 5 \\ & 60 \div 10 \end{aligned}$ | Know and use division facts related to the 2 x table, 5 x table and 10x table. |

## Division

Year 3

| Mental <br> calculation <br> skills | Examples | Requisite prior knowledge |
| :---: | :--- | :--- |

Year 4

| Mental <br> calculation <br> skills | Examples | $\quad$ Requisite prior knowledge |
| :---: | :--- | :--- |

Year 5

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Halve threedigit multiples of $\mathbf{1 0}$ to $\mathbf{1 0 0 0}$ | $760 \div 2$ <br> Halve 770 <br> Find $1 / 2$ of 440 $? \times 2=290$ | Know multiples of 10 up to 1000. <br> Partition multiples of 10 into pairs of multiples of 10 e.g. $170=160+$ 10. <br> Partition multiples of 100 into pairs of multiples of 100 e.g. $700=600$ $\text { + } 100$ <br> Halve even numbers to 100 . <br> Understand that halving is dividing by 2 and half as one of two equal parts. Understand and use knowledge of base 10 number system to relate 8 $\div 2 \text { to } 80 \div 2 \text { to } 800 \div 2$ |
| Find the remainder after dividing a twodigit number by a one-digit number | $27 \div 4$ | Know multiplication facts to $10 \times 10$ and related division facts. Count in equal steps of $2,3,4,5,6,7,8,9$ and 10 from non-multiples of those numbers e.g. count back in sixes from 43. |
| Divide whole numbers by 10, 100 or 1000 (decimal answers) | $\begin{aligned} & 25 \div 10 \\ & 673 \div 100 \\ & 74 \div 100 \end{aligned}$ <br> How many metres are there in 456 cm ? | Understand base 10 number system i.e. 10 ones / units $=1$ ten and vice versa and 10 tens $=1$ hundred and vice versa. <br> Understand base 10 decimal number system i.e. 1 unit = 10 tenths, 1 tenth $=10$ hundredths. <br> Understand that zero can be used as a place holder. |
| Divide a multiple of 10 by a single- digit number (whole number answers) | $\begin{aligned} & 80 \div 4 \\ & 270 \div 3 \end{aligned}$ | Know multiplication facts to $10 \times 10$ and related division facts. Understand and use knowledge of base 10 number system to relate 8 $\div 4 \text { to } 80 \div 4 \text { to } 800 \div 4$ |
| Find fractions of whole numbers or quantities | $\begin{aligned} & 2 / 3 \text { of } 27 \\ & 4 / 5 \text { of } 70 \mathrm{~kg} \end{aligned}$ | Know multiplication facts to $10 \times 10$ and related division facts. <br> Understand fractions of shapes. <br> Understand fractions as equal parts of a whole. <br> Understand what the numerator and denominator represent in a fraction. <br> Count in equal steps (groups). <br> Understand that finding a fraction of an amount is related to sharing equally (division). <br> Find simple unit fractions of numbers. |
| Find 50\%, 25\% or $10 \%$ of integers or quantities | $\begin{aligned} & 25 \% \text { of } 20 \mathrm{~kg} \\ & 10 \% \text { of } £ 80 \end{aligned}$ | As above plus: <br> Know percentage equivalences for $1 / 2,1 / 4$ and $1 / 10$ and vice versa. |
| Divide twodigit numbers by 4 or 8 | $\begin{aligned} & 72 \div 4 \\ & 96 \div 8 \end{aligned}$ | Understand the relationship between $\div 2, \div 4$ and $\div 8$. Halve two-digit numbers. |

Year 6

| Mental calculation skills | Examples | Requisite prior knowledge |
| :---: | :---: | :---: |
| Divide a twodigit number by a singledigit number | $\begin{aligned} & 88 \div 3 \\ & 68 \div 4 \end{aligned}$ | Know multiplication facts to $10 \times 10$ and related division facts. Partition numbers in different ways e.g. when finding $84 \div 7$, recognising 84 as $70+14$. |
| Halve decimals with tens, units and tenths | Halve 72.7 <br> Find $1 / 2$ of 15.2 . $13.1 \mathrm{~kg} \div 2$ | Halve whole numbers to 100. <br> Understand that halving is dividing by 2 and half as one of two equal parts. Understand base 10 decimal number system i.e. 1 unit = 10 tenths, 1 tenth $=10$ hundredths. <br> Understand and use knowledge of base 10 number system to relate 8 $\div 2$ to $80 \div 2$ and $0.8 \div 2$. |
| Divide multiples of 100 by a multiple of 10 or 100 (whole number answers) | $\begin{aligned} & 400 \div 20 \\ & 4000 \div 200 \end{aligned}$ <br> How many 20p coins in $£ 20$ ? | Know multiplication facts to $10 \times 10$ and related division facts. Understand base 10 number system i.e. 10 ones / units $=1$ ten and vice versa and 10 tens = 1 hundred and vice versa. <br> Understand and use knowledge of base 10 number system to relate 8 $\div 4 \text { to } 80 \div 40 \text { to } 800 \div 40 \text { to } 800 \div 400$ |
| Divide twodigit decimals | $4.8 \div 6$ | Know multiplication facts to $10 \times 10$ and related division facts. Understand and use knowledge of base 10 number system to relate $18 \div 6$ to $180 \div 6$ and $1.8 \div 6$. |
| Find 10\% or multiples of $10 \%$ of whole numbers or quantities | Find $30 \%$ of 50 ml What is $70 \%$ of 200 g ? How much would you pay for an item worth £30 with $40 \%$ off? | Know multiplication facts to $10 \times 10$ and related division facts. Know equivalence between $1 / 10$ and $10 \%$ and related fractions e.g. $3 / 10=30 \%, 9 / 10=90 \%$. <br> Divide whole numbers or quantities by 10 . |
| Simplify fractions by cancelling | What is $14 / 35$ in its simplest form? <br> Reduce 56/100 to its simplest form. | Know multiplication facts to $10 \times 10$ and related division facts. Identify all factors of numbers to 100 . |
| Scale up or down using known facts | Given that 3 oranges cost 24 p, find the cost of 4 oranges. | Know multiplication facts to $10 \times 10$, including related division facts. |
| Divide by 25 or 50 | $\begin{aligned} & 480 \div 25 \\ & 3200 \div 50 \end{aligned}$ | Divide numbers by 100 . Double numbers. |

